Abstract

A numerical investigation of the transient development of flame and soot distributions in a laminar axisymmetric coflowing diffusion flame of methane in air has been carried out considering the air preheating effect. The gas phase conservation equations of mass, momentum, energy, and species concentrations along with the conservation equations of soot mass concentration and number density are solved simultaneously, with appropriate boundary conditions, by an explicit finite difference method. Average soot diameters are then calculated from these results. It is observed that the soot is formed in the flame when the temperature exceeds 1300 K. The contribution of surface growth toward soot formation is more significant compared with that of nucleation. Once the soot particles reach the high temperature oxygen-enriched zone beyond the flame, the soot oxidation becomes important. During the initial period, when soot oxidation is not contributing significantly, some of the soot particles escape into the atmosphere. However, under steady condition the exhaust product gas is nonsooty. Preheating of air increases the soot volume fraction significantly. This is both due to more number of soot particles and the increase in the average diameter. However, preheating of air does not cause a qualitative difference in the development of the soot-laden zone during the flame transient period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.