Abstract

Nonviral DNA vectors are promising alternatives to viral ones. Their use in DNA medicine is limited by an inability to transfect, for example, nondividing or suspension cells. In recent years, star-shaped synthetic polycationic vectors, so called “Nanostars”, have shown some promise in this regard, at least when compared to the “gold standard” in nonviral vectors, namely, linear poly(ethyleneimine) (l-PEI). It has been hypothesized that an ability to transiently destabilize cellular membranes is partially responsible for the phenomenon. This hypothesis is investigated here, taking human leukemia suspension cells (Jurkat cells) as an example. Contrary to l-PEI, the Nanostars promote the cellular uptake of small, normally membrane-impermeant molecules (trypan blue and propidium iodide) as well as that of fluorescent polystyrene beads (average diameter 100 nm). Since Nanostars, but not l-PEI, are apparently able to deliver DNA to nuclei of nondividing cells, nuclear uptake is, in addition, investigated with isolated cell nuclei. Our results provide evidence that Nanostars are more efficient than l-PEI in increasing the nuclear membrane association/permeability, allowing accumulation of their cargo on/in the nucleus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.