Abstract

Although the existence of tumor-initiating cells (T-ICs) in several types of human cancer has been documented, the contribution of somatic stem cells to the development of T-ICs has remained unclear. Here, we show that normal mouse ovary contains epithelial cell adhesion molecule (EpCAM)-expressing stem-like cells that possess the ability to differentiate into cytokeratin 8 (CK8)-expressing epithelial progeny cells. Furthermore, RNA interference-mediated transient depletion of the tumor suppressor p53 followed by retrovirus-mediated transfer of c-Myc and K-Ras oncogenes in EpCAM-expressing ovarian stem-like cells resulted in the generation of ovarian T-ICs. The established ovarian T-ICs gave rise to hierarchically organized lethal tumors in vivo and were able to undergo peritoneal metastasis. Finally, subsequent RNA interference-mediated knockdown of p53 in tumor cells triggered the expansion of EpCAM-expressing stem-like tumor cells and induced further tumor growth. These data reveal a role for p53 in the development and expansion of ovarian stem-like tumor cells and subsequent malignant progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call