Abstract

Abstract A transient chemomechanical coupling formulation for solid continuum is presented. The second-order rate and the characterized time are introduced to include the transient effect through Taylor expansion. The transient Reynold’s transport theorem is derived with the new products or material elimination considered. Based on conservation laws and the second law of thermodynamic, we state a consistent Helmholtz-energy-based framework. The transient field equations take mechanical and chemical contributions and microscopic time into account. Either microscopic time or chemical reactions leads to the unsymmetry of the stress tensor. The relationship of Helmholtz energy and constitutive properties, the evolution equations, and the entropy are consistent with the classical continuum thermodynamics and the constitutive theory in continuum mechanics. Further, the transient equations of thermal conduction and diffusion with finite velocity are naturally derived rather than postulated, and a comparison with the existing theories is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.