Abstract

Transient conductivity and photoconductivity are explored in amorphous silicon (a-Si:H). The breakdown of the time-of-flight method is demonstrated in doped samples of sufficient bulk conductivity. The transient response is then shown to contain no information about the drift mobility or carrier lifetimes, but instead is governed by the contact depletion-layer capacitance and the bulk series resistance. Analysis of the results gives a new method of determining the density of shallow occupied states in a-Si:H and quantitative results are given for some n- and p-type samples. Measurements of gap-cell photoconductivity are shown to have similar contact effects which causes a decay artifact that can extend up to \ensuremath{\sim}1 sec. It is argued that the artifact may have been mistakenly interpreted as bulk dispersive transport and recombination in some published data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.