Abstract

The pre-swirl inflow generated by guide vanes could improve the hydrodynamic performances of centrifugal pumps as long as the inflow matches the patterns of internal flow of the impeller. In this work, we present a numerical investigation on the internal flow in a centrifugal impeller subjected to inflow artificially constructed with simple pre-swirling; unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations are performed at the designed flow rate with five values of rotating velocity of the inflow, i.e., Urot/Uref = −0.5, −0.3, 0.0, 0.3 and 0.5, where Urot and Uref denote the rotating and normal velocity component at the entrance of the inflow tube, respectively. The primary objective of this work is to reveal the three-dimensional characteristics of internal flow of the impeller as influenced by the superimposed pre-swirl inflow, and to identify the propagation of inflow within the impeller. The numerical data are presented and analyzed in terms of the streamline fields, the distributions of various velocity components along the circumferential and axial directions, the pressure distribution and limiting streamlines on the surfaces of a blade. Numerical results reveal that separation occurs around the leading edge of the blades and occasionally at the trailing edge, and the internal flow is more uniform in the central region of the channels. A noticeable fluctuation of both radial and circumferential velocities is observed at the outlet of the impeller as it is subjected to counter-rotating inflow, and the greatest fluctuation is close to the hub instead of the middle channel and shroud as for the co-rotating inflow. The boundary layer flow of suction surface is more sensitive to the inflow; occasional small-scale separation bubble occurs on the suction surface around the leading edge for some blades, and reattachment of separated flow is reduced for the counter-rotating inflow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call