Abstract

Abstract The theory of elasticity of polymer networks has been developed along two lines. The phenomenological approach leads to the Mooney-Rivlin relation between stress and extension ratio for uniaxial extension. The statistical theory of elasticity, based on a model for polymer molecules, predicts a similar relation with one of the constants zero. Actual elastic properties of rubbers do not agree fully with either theory. Experimental results are reported obtained with quantitatively cured polybutadiene and polyisoprene vulcanizates. These data are near-equilibrium results through the use of a cyclic stress sequence which largely eliminates the influence of long-time creep. The dependence of the initial modulus and the parameters of the Mooney-Rivlin relation on the chemical nature and the degree of branching of the polymer, the type of cross-links, and temperature has been investigated. A possible relation between the energy component of the elastic force and one of the parameters is discussed. These ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.