Abstract

Neocortical microcircuits are built during development and require the coordinated assembly of excitatory glutamatergic projection neurons (PNs) into functional networks. Neuronal migration is an essential step in this process. In addition to cell-intrinsic mechanisms, external cues including neurotransmitters regulate cortical neuron migration, suggesting that early activity could influence this process. Here, we aimed to investigate the role of cell-intrinsic activity in migrating PNs in vivo using a designer receptor exclusively activated by a designer drug (DREADD) chemogenetic approach. In utero electroporation was used to specifically express the human M3 muscarinic cholinergic Gq-coupled receptor (hM3Dq) in PNs and calcium activity, migratory dynamics, gene expression, and laminar positioning of PNs were assessed following embryonic DREADD activation. We found that transient embryonic DREADD activation induced premature branching and transcriptional changes in migrating PNs leading to a persistent laminar mispositioning of superficial layer PNs into deep cortical layers without affecting expression of layer-specific molecular identity markers. In addition, live imaging approaches indicated that embryonic DREADD activation increased calcium transients in migrating PNs and altered their migratory dynamics by increasing their pausing time. Taken together, these results support the idea that increased cell-intrinsic activity during migration acts as a stop signal for migrating cortical PNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.