Abstract

Methodologies for simple and rapid identification of gas compounds are needed in the fields of environmental and security. Here, a new and simple method for the discrimination of gas compounds was designed through an interesting transient cataluminescence (TRCTL) phenomenon on the highly efficient MgO materials. The flowerlike MgO with high CTL activity was controllably synthesized via a facile and time-saving aqueous precipitation route and characterized by scanning electron microscopy, powder X-ray diffractometry, high-resolution transmission electron microscopy, and N2 adsorption measurements, etc. With flowerlike MgO working as the sensing material, the newly developed CTL gas sensor exhibited highly active, ultrafast, and characteristic responses toward many analytes; the TRCTL curves thus were obtained and 10 VOCs have been successfully identified. Parallel experimental results show that the controllable synthesis of flowerlike MgO can greatly enhance the discrimination capacities for VOCs. Further, the TRCTL of CHCl3 and C2H5OC2H5 were taken as typical examples to illustrate the possible sensing mechanism, which could contribute to explaining processes of catalytic oxidations. We expect this novel TRCTL concept will be of practical importance for applications including gas detection, gas discrimination, and research of chemical kinetics processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.