Abstract

AbstractWe analyze space‐time variations in the depth distribution of seismicity in Southern and Baja California, focusing on transients following four M ≥ 6.7 mainshocks. The regular brittle‐ductile transition depth is estimated at different locations as the local bottom of 99,636 background events and is compared with the bottom of events within earthquake clusters. The four M ≥ 6.7 mainshock‐aftershock sequences exhibit early aftershocks with depths up to 5 km below the regular brittle‐ductile transition depth and epicentral distances up to 15 km from the mainshock ruptures. The maximum aftershock depth increases abruptly following the mainshocks and recovers to the background level after several years. The wide‐spread deeper‐than‐usual early aftershocks favor classical brittle‐ductile transition over change from unstable to stable frictional response as the mechanism governing the base of the seismogenic zone. Episodic transient deepening of the brittle‐ductile transition following major earthquakes can have important long‐term effects on the lower crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.