Abstract

Polymer-based interpenetrating networks (IPNs) with controllable and programmable degradation and release kinetics enable unique opportunities for physisorption and controlled release of therapeutic proteins or vaccines while their chemical and structural integrities are conserved. This paper presents materials, a simple preparation method, and release kinetics of a series of long-term programmable, biocompatible, and biodegradable polymer-based IPN controlled release platforms. Release kinetics of the gp41 protein was controlled over a 30-day period via tuning and altering the chemical structure of the IPN platforms. Post-release analysis confirmed structural conservation of the gp41 protein throughout the process. Cell viability assay confirmed biocompatibility and non-cytotoxicity of the IPNs.

Highlights

  • Recent developments in pharmacology have triggered the emergence of therapeutic proteins for the treatment of human and animal diseases

  • Gelatin (Type A) (Prionex, highly-purified), polyethylene glycol (Mw : 20,000 gmol1 ), polyvinyl alcohol (Mw : 61,000 gmol1, 98.0–98.8 mol % hydrolyzed), 2-hydroxyethylene cellulose (Mw : 90,000 gmol1 ), glycerol, sucrose, and glutaraldehyde were purchased from Sigma Aldrich

  • The release of proteins from the IPN films (IPNFs) depends on their dissolution rates

Read more

Summary

Introduction

Recent developments in pharmacology have triggered the emergence of therapeutic proteins for the treatment of human and animal diseases. These protein therapeutics include monoclonal antibodies, hormones, enzymes, growth factors, immunological molecules, and many more. The development of such protein therapeutics with diverse functions requires the design of new platforms that can meet the diverse delivery needs. There have been substantial efforts to develop micro-actuators [1,2,3,4,5,6,7] for controlling miniaturized implantable containers that physically hold proteins and medicine; and release them through an actuator-controlled gate when needed [8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.