Abstract

SummaryBifurcation of unsaturated soils into a localized shear band is a ubiquitous failure mode of partially saturated soils. The density and degree of saturation have major impacts on the inception of localized deformations in unsaturated soils. Unsaturated fluid flow may dramatically change the density and degree of fluid saturation of unsaturated soils. Therefore, the unsaturated fluid flow is a potential trigger for shear banding in such materials. In this paper, we derive a simplified bifurcation condition of localized deformation in unsaturated soils under the local transient condition at finite strain. This transient bifurcation condition is implemented into a nonlinear finite element code to study the inception of localized deformation in unsaturated soil specimens. Numerical simulations are conducted to study the impact of soil fabrics of density, a ‘bonding’ variable, and intrinsic permeability on the inception of localized failures via the transient bifurcation criterion. Mesh sensitivity analysis is performed to demonstrate the viscosity effect of unsaturated fluid flow on the localized deformation. Numerical simulations demonstrate that the transient bifurcation condition can detect the localized deformation triggered by the internal unsaturated fluid flow process in unsaturated soils. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call