Abstract

This paper investigates the mechanisms that contribute to the spreading of liquid metal macro-drop deposited during Stationary Pulsed Gas Metal Arc Welding on an initially cold solid workpiece. Surface tension and inertial effects take an important part in the behaviour of the liquid metal macro-drop, but in this configuration the influence of energetic effects can also be significant. The experimental results are discussed in the light of dimensional analysis in order to appreciate the influence of the process parameters and the physical mechanisms involved on the spreading of a macro-drop. A law is established to model forced non-isothermal spreading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.