Abstract

ABSTRACT The gas flow channels inside unitized regenerative fuel cells display obvious effects on relevant parameter changing behaviors such as species concentration, electrical signal and thermal signal during mode switching. In previous study, detailed transportation behaviors inside a cell constructed with streamlined channels have not been investigated. In our present study, a two-dimensional, transient model coupling non-isothermal characteristics is employed to study the changing characteristics of the cell with typical streamlined channel and comparatively analyze the channel structure impacts on the working states inside the operating cell regions. The simulated results indicate that when turning the mode from electrolyzer to fuel cells, the changing response occupied time of each parameter is required more, compared with the stabilizing procedure after entering the electrolytic cell procedure. For different oxygen-side channels, when reducing the channel depth, the current density output is raised, and the needed time-span for the stabilizing the working state is reduced. The present simulation results facilitate better understanding mass transportation behaviors inside unitized regenerative fuel cells when the mode switches from an electrolytic cell to fuel cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.