Abstract

This paper shows how the Laplace transform analysis of Bailey (1954), (1957) can be continued to yield additional insights about the time-dependent behavior of the queue-length process in theM/M/1 model. A transform factorization is established that leads to a decomposition of the first moment as a function of time into two monotone components. This factorization facilitates developing approximations for the moments and determining their asymptotic behavior as. All descriptions of the transient behavior are expressed in terms of basic building blocks such as the first-passage-time distributions. The analysis is facilitated by appropriate scaling of space and time so that regulated or reflected Brownian motion (RBM) appears as the special case in which the traffic intensity ρ equals the critical value 1. An operational calculus is developed for obtainingM/M/1 results directly from corresponding RBM results as well as vice versa. The analysis thus provides useful insight about RBM approximations for queues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.