Abstract

In this paper we consider the asymptotic behavior in time of solutions to the heat equation with nonlinear Neumann boundary conditions of the form ∂u/∂n = F(u), where F is a function that grows superlinearly. Solutions frequently exist for only a finite time before blowing up. In particular, it is well known that solutions with initial data of one sign must blow up in finite time, but the situation for sign-changing initial data is less well understood. We examine in detail conditions under which solutions with sign-changing initial data (and certain symmetries) must blow up, and also conditions under which solutions actually decay to zero. We carry out this analysis in one space dimension for a rather general F, while in two space dimensions we confine our analysis to the unit disk and F of a special form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.