Abstract

In this article, transient hydrodynamic and heat-transfer behavior of Newtonian fluid flow in vertical parallel-plate channels partially filled with a porous medium has been investigated numerically. In this regard, the influences of macroscopic local inertial term and the viscous heating due to the viscous dissipation were taken into account in the momentum equations of porous region and the thermal energy equations, respectively. Moreover, Forchheimer–Brinkman extended Darcy model was used to model fluid flow in the porous region. In addition, an analytical solution was obtained in the case of negligible Brinkman and Forchheimer number values at the steady-state conditions. The predicted results were compared with those predicted by a two-parameter perturbation technique developed by the present authors at the steady-state conditions and good agreement was obtained. The predicted results clearly indicate that neglecting the inertial effect in high permeability porous media or high velocity flows can alter substantially the flow and heat transfer characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.