Abstract
The transient response of electrorheological suspensions in shear flow subjected to a suddenly imposed electric field is investigated experimentally. Barium titanate∕silicone oil and alumina∕mineral oil suspensions are employed. The evolution of both the rheological properties and the suspension structure are investigated. Results are compared with predictions from a two-fluid continuum model reported previously. Transient responses appear above a critical field strength, and the critical Mason number for the onset of a transient rheological response is equivalent to the critical Mason number for the onset of lamella formation, within experimental uncertainty. These results are consistent with predictions. The experimentally determined values of the critical Mason number agree with those predicted, with differences of the order of the experimental uncertainty. However, we find that the critical Mason number depends on shear rate, rather than being independent of shear rate as predicted.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.