Abstract

Abstract Pressure build-up due to fluid thermal expansion in sealed annuli of HP/HT wells can have serious consequences such as casing failure or tubing collapse. To determine whether mitigation was required for a HP/HT development, annular pressures in an appraisal well were studied with a dedicated field test, which consisted of running a pressure/temperature memory gauge in a casing/casing annulus of a well and testing the well several times during a 3-month period, after which the gauge was retrieved and the data were read out. First of all, comparison of the magnitude of the observed annular pressures with the burst and collapse ratings of the casings, shows that annular pressure build-up is a serious consideration in casing design. Such design is to be based on theoretical models for annular pressure build-up. The data acquired with the test serve to validate these models. The data demonstrated that in the lower temperature range (20 to 40 °C), on average, pressure development in the annulus agreed reasonably well with theoretical model predictions, based on thermal expansion of the annular fluids and casings, and ballooning and compression of the casing strings. The influence of these factors could be established by analyzing the transient pressure response of the annulus. At higher temperatures the theoretical models overestimate pressure build-up. This is probably to be attributed to the properties of the completion fluids differing from the properties of the base fluid, water. Estimates on the basis of pure water properties can be considered a worst-case estimate for pressure build-up. Leak-off of the annular fluids, which was seen to dominate pressure development during a previous test in a well with a cement shortfall between casings, did not play a significant role in this fully cemented and sealed annulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call