Abstract

A solvable, minimal model of diffusion in the presence of a reversible adsorption site is investigated. We show that the diffusive particles are influenced by the adsorbing site on transient times when they have anomalous subdiffusive behavior. However, the particle dispersion law crosses over to the normal diffusive regime on asymptotically long times. The subdiffusive regime is characterized by a t^{1/4} transient scaling with the same exponent as for the irreversible adsorption. On this transient time scale dominated by particle adsorption, there is a depletion of particles near the adsorbing site, and the typical width of the depletion zone grows in time as t^{1/4} with the same exponent as the subdiffusive dispersion. We show that having a nonzero desorption probability for the adsorbed particles produces a crossover towards normal diffusion on time scales larger than a characteristic reactive time, which we show scales with diffusivity and the adsorption site reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.