Abstract

With an increasing number of distributed energy resources integrated into the power system, inverters need to take on the corresponding responsibility for the security and stability of the system. Virtual synchronous generators (VSGs) are proposed to mimic dynamic characteristics of traditional rotational synchronous generators (RSGs) to compensate for the loss of inertia and reserve capacity. Similar to RSGs, VSGs will experience transient angle instability under certain conditions, which likely threatens the system security. In this paper, transient angle stability of a VSG is investigated by Lyapunov’s direct method. The deteriorative effect of reactive power control loop on transient angle stability is first analyzed and then voltage variation is incorporated into an approximate Lyapunov’s direct method. In this method, the inverter internal voltage is treated as a parameter rather than a state variable. Moreover, the influence of different parameters on transient angle stability is studied. Finally, an enhanced control strategy is presented to improve the transient angle stability by adjusting the reference power. Numerical simulation results are presented to validate the effectiveness of the proposed method and the enhanced control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.