Abstract

Transient response performance and steady-state operation performance are the two most important performance indicators of a motor drive system. In order to solve these two problems, this study proposes a new induction motor (IM) model, and then designs a new simplified linearization controller method. First, the tangential force that determines the transient process of the motor is represented by electromagnetic torque, and the radial force is represented by reactive torque. Then, the dual-torque model of IM is derived, which not only accurately shows the rotating air-gap magnetic field through the amplitude and rotating angular frequency, but also visually demonstrates the physical essence of the transient process of IM. Then, this study proposes a simplified feedback linearization method without the analysis of zero dynamic. In addition, a time-scale hierarchical control system is designed to reduce the ripple caused by the coupling of different time-scale variables. The experimental results show that the steady-state torque ripple of the proposed method is 65% lower than that of RFOC, and the torque response speed is 10% higher than that of DTC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call