Abstract

Applying molecular-beam methods to a nanolithographically prepared planar PdSiO2 model catalyst, we have performed a detailed study of the kinetics of CO oxidation. The model catalyst was prepared by electron-beam lithography, allowing individual control of particle size and position. The sample was structurally characterized by atomic force microscopy and scanning electron microscopy before and after reaction. In the kinetic experiments, the O-rich and CO-rich regimes were investigated systematically with respect to their transient and steady-state behaviors, both under bistable and monostable reaction conditions. Separate molecular beams were used in order to supply the reactants, allowing individual control over the reactant fluxes. The desorbing CO2 was detected by both angle-resolved and angle-integrated mass spectrometries. The experimental results were analyzed using different types of microkinetic models, including a detailed reaction-diffusion model, which takes into account the structural parameters of the catalyst as well as scattering of the reactants from the support. The model quantitatively reproduces the results as a function of the reactant fluxes and the surface temperature. Various kinetic effects observed are discussed in detail on the basis of the model. Specifically, it is shown that under conditions of limited oxygen mobility, the switching behavior between the kinetic regimes is largely driven by the surface mobility of CO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.