Abstract

Fluorocarbon plasmas are widely used in applications and as model systems for fundamental investigations of complex plasmas. In recent years pulsing of the rf discharge has been used as an additional parameter for process control, because many plasma parameters, e.g. densities and temperatures, become time dependent when the rf power is modulated. In this work tunable diode laser absorption spectroscopy in the mid-IR (IR-TDLAS) was applied to measure time-resolved densities of the transient species CF and CF2 and that of the stable product C2F4 in pulsed CF4/H2 asymmetrical capacitively coupled radio-frequency plasmas at 13.56 MHz. Simultaneously, the thickness of amorphous thin fluorocarbon films (a-C:F) on the powered electrode was determined by means of in situ ellipsometry. Therefore, it was possible to study the correlation between gas phase species and thin film formation. The decay curves of the CF and CF2 densities in the off-phase of the pulsed rf plasma were fitted with a combination of first and second order processes involving the loss processes of these radicals in the gas phase and at the surfaces. Particularly, in the plasma off-phase, the loss of CF2 radicals forming C2F4 was found to be dominant in the CF2 kinetics, but of minor importance for C2F4 production. Plasma process parameters such as total pressure, gas composition, power and power modulation were varied to investigate the interaction between gas phase species and surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call