Abstract

In this article, the M/M/k/N/N queue is modeled as a continuous-time homogeneous Markov system with finite state size capacity (HMS/cs). In order to examine the behavior of the queue a continuous-time homogeneous Markov system (HMS) constituted of two states is used. The first state of this HMS corresponds to the source and the second one to the state with the servers. The second state has a finite capacity which corresponds to the number of servers. The members of the system which can not enter the second state, due to its finite capacity, enter the buffer state which represents the system's queue. In order to examine the variability of the state sizes formulae for their factorial and mixed factorial moments are derived in matrix form. As a consequence, the pmf of each state size can be evaluated for any t ∈ ℝ+. The theoretical results are illustrated by a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.