Abstract

A theoretical method is developed to investigate the effects of ring stiffeners on vibration characteristics and transient responses for the ring-stiffened composite cylindrical shells subjected to the step pulse loading. Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The ring stiffeners are laminated with a composite material and have a uniform rectangular cross-section. The Rayleigh–Ritz procedure is applied to obtain the frequency equation. The modal analysis technique is used to develop the analytical solutions of the transient response. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The theoretical results are verified by comparison with FEM results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call