Abstract

Photomultiplication-type organic photodetectors have emerged as a class of next generation solution-processed photodetectors with high gain. Despite this promising feature, the reported photodectors still suffer from relatively large dark currents at high bias voltages. To overcome this drawback, a mechanistic understanding of the photomultiplication effect in organic photodiodes is required. In this work, we advanced the performance of photomultiplication-type organic photodetectors by tuning the active layer composition and interfacial layers. The optimized devices exhibit small dark currents and flat dark current–voltage curves under the reverse bias condition up to −10 V. The optimized photodetectors also reached an ultra-high responsivity of 23.6 A/W and the specific detectivity of 1.04 × 1012 Jones at −10 V. More importantly, we investigated the photomultiplication process with multiple transient techniques and revealed that the photoconductive gain effect is a slow process, which relies on the photo-Schottky effect enabled by charge carrier tunneling and the accumulation of holes. Furthermore, we also demonstrated prototypical pulsed-light detection based on the optimized devices, which showed great potential for real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.