Abstract
When an Autonomous Underwater Vehicle (AUV) is operating close to a moving submarine, the hydrodynamic interaction between the two vehicles can prevent the AUV from maintaining its desired trajectory. This can lead to mission failure and, in extreme cases, collision with the submarine. This paper outlines the transient interaction influence on the hydrodynamic coefficients of an AUV operating in close proximity and in relative motion to a larger moving submarine. The effects of relative motion on the interaction behaviour were investigated via two manoeuvres, i.e. the AUV overtaking and being overtaken by the submarine at different relative forward velocities and lateral distances. The results presented are from a series of Computational Fluid Dynamics (CFD) simulations on axisymmetric AUV and submarine hull forms, with validation of the CFD model carried out through scaled captive model experiments. The results showed that an AUV becomes less susceptible to the interaction influence when overtaking at speeds higher than the submarine. The implications of the interaction influence on the AUV’s ability to safely manoeuvre around the submarine are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.