Abstract

An M/ G/1 retrial queueing system with disasters and unreliable server is investigated in this paper. Primary customers arrive in the system according to a Poisson process, and they receive service immediately if the server is available upon their arrivals. Otherwise, they will enter a retrial orbit and try their luck after a random time interval. We assume the catastrophes occur following a Poisson stream, and if a catastrophe occurs, all customers in the system are deleted immediately and it also causes the server’s breakdown. Besides, the server has an exponential lifetime in addition to the catastrophe process. Whenever the server breaks down, it is sent for repair immediately. It is assumed that the service time and two kinds of repair time of the server are all arbitrarily distributed. By applying the supplementary variables method, we obtain the Laplace transforms of the transient solutions and also the steady-state solutions for both queueing measures and reliability quantities of interest. Finally, numerical inversion of Laplace transforms is carried out for the blocking probability of the system, and the effects of several system parameters on the blocking probability are illustrated by numerical inversion results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.