Abstract

5-Methylcytosine (5mC) is an epigenetic modificationinvolved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and invivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call