Abstract

The ultrafast dynamics of HDO:D2O ice Ih at 180 K is studied by midinfrared ultrafast pump-probe spectroscopy. The vibrational relaxation of HDO:D2O ice is observed to proceed via an intermediate state, which has a blueshifted absorption spectrum. Polarization resolved measurements reveal that the intermediate state is part of the intramolecular relaxation pathway of the HDO molecule. In addition, slow dynamics on a time scale of the order of 10-100 ps is observed, related to thermally induced collective reorganizations of the ice lattice. The transient absorption line shape is analyzed within a Lippincott-Schroeder model for the OH-stretch potential. This analysis identifies the main mechanism behind the strong spectral broadening of the v(OH)=1-->2 transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call