Abstract
A simple and modular route to arylcycloheptene scaffolds is reported. The two-step route from Knoevenagel adducts and allylic electrophiles is made possible through the design of a Cope rearrangement that utilizes a "traceless" activating group to promote an otherwise thermodynamically unfavorable transformation. Experimentally, the [3,3] rearrangement occurrs transiently at room temperature with a computed barrier of 19.5 kcal mol-1, which ultimately allows for three-component bis-allylation. Ring-closing metathesis delivers the arylcycloheptane and removes the activating group. This report describes the design and optimization of the methodology, scope and mechanistic studies, and computational analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.