Abstract

We consider the two-dimensional simple random walk conditioned on never hitting the origin, which is,formally speaking, the Doob's $h$-transform of the simple random walk with respect to the potential kernel. We then study the behavior of the future minimum distance of the walk to the origin, and also prove that two independent copies of the conditioned walk, although both transient, will nevertheless meet infinitely many times a.s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.