Abstract

Fungal cells are endowed with a cell wall that plays a crucial role in the fungal life, by providing mechanical strength and protecting fungal cells from their environment. Chemically, this fungal cell wall consists of different polysaccharides, contributing to 80-95% of the cell wall dry mass. The core cell wall structure is made up of β-(1,6)-branched β-(1,3)- glucan linked to chitin, and is common to all fungal species. Branching leads to β-(1,3)-glucan ramificating, facilitating its cross-linking with chitin as well as other cell wall components resulting in the construction of a functional fungal cell wall. Recently, using Saccharomyces cerevsiae as the model, we showed that the dual activity associated with CAZy family GH72 transglycosidases (http://www.cazy.org/) belonging to the GAS-family, are capable of elongating as well as branching β-(1,3)-glucan, an essential phenomenon during cell wall biogenesis and remodeling. Not only GAS-proteins, but also GEL-family protein from Aspergillus fumigatus (a pathogenic fungus) showed β-(1,3)- glucan elongating-branching activity. Interestingly, this dual activity was shown by only those GH72 family members containing a Carbohydrate Binding Motif-43 (CBM), suggesting that branching activity is universal in the fungal kingdom. Disruption of β-(1,3)-glucan branching resulted either in a sick-phenotype or led to inviability, suggesting that β-(1,3)-glucan branching is an essential phenomenon during fungal cell wall biogenesis. In this commentary, future perspectives on our findings are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call