Abstract

Interest in plant protein-based hydrogels with desirable strength has been increasing in recent years. In this study, Bambara groundnut protein isolate (BPI) was crosslinked with transglutaminase (TGase) (0 – 25 U/g protein) during gelation and rheological, textural and microstructural properties of the resulting hydrogels were investigated. Treatment with TGase up to 15 U/g protein resulted in the formation of hydrogels with small pores and an organised homogeneous network. G’ of TGase-treated BPI hydrogels was more than ten-fold higher than G” throughout the frequency range of 0–100 rad/s, suggesting dominance of the elastic like behaviour. BPI hydrogel with the highest G’ (6967 Pa) and hardness (5.60 N) was formed at 15 U/g protein of TGase activity. The hydrogel had a high distribution β-sheets (53.52%) and α-helixes (26.17%) as compared to the β-turns and random coils. However, a further increase in TGase activity did not improve the hydrogel properties. Transglutaminase mediated crosslinking of BPI hydrogel was demonstrated by the reduction in amine and thiol groups and the formation of a new protein band (56 kDa) in crosslinked hydrogels. Overall, TGase promoted the formation of a strong gel with an organised network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call