Abstract

Background: Phenotypic switch of vascular smooth muscle cells (VSMCs) accompanies neointima formation and associates with vascular diseases. Platelet-derived growth factor (PDGF)-induced activation of PDGFR/Akt1 and β-catenin signaling pathways in VSMCs has been implicated in vessel occlusion. Transglutaminase 2 (TG2) regulates these pathways and its levels are increased in the neointima. Objective: The aim of this study was to evaluate the role of TG2 in PDGF/β-catenin signaling cross-talk and assess its contribution to neointima. Methods: Aortic VSMCs from wild-type and TG2 knockout mice were tested in vitro for levels of VSMC markers, proliferation, migration and PDGF-induced activation of PDGFR/Akt1 and β-catenin pathways. Neointima in these mice was studied ex vivo in coronary vessels using a heart slice model and in vivo using a carotid artery ligation model. Results: Genetic deletion of TG2 attenuated the PDGF-induced phenotypic switch of aortic VSMCs, reduced their proliferation and migration rates, and inhibited PDGF-induced activation of PDGFR/Akt1 and β-catenin pathways in both ex vivo and in vivo neointima models. Importantly, genetic deletion of TG2 also markedly attenuated vessel occlusion. Conclusions: TG2 promotes neointima formation by mediating the PDGF-induced activation of the PDGFR/Akt1 and β-catenin pathways in VSMCs. This study identifies TG2 as a potential therapeutic target for blocking neointima in blood vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.