Abstract

Foot-and-mouth disease virus (FMDV) is an economically devastating viral disease leading to a substantial loss to the swine industry worldwide. A novel alternative strategy is to develop pigs that are genetically resistant to infection. Here, we produce transgenic (TG) pigs that constitutively expressed FMDV-specific short interfering RNA (siRNA) derived from small hairpin RNA (shRNA). In vitro challenge of TG fibroblasts showed the shRNA suppressed viral growth. TG and non-TG pigs were challenged by intramuscular injection with 100 LD50 of FMDV. High fever, severe clinical signs of foot-and-mouth disease and typical histopathological changes were observed in all of the non-TG pigs but in none of the high-siRNA pigs. Our results show that TG shRNA can provide a viable tool for producing animals with enhanced resistance to FMDV.

Highlights

  • Foot-and-mouth disease (FMD) is an acute and highly contagious disease of cloven-hoofed animals, including cattle, pigs, sheep and goats and more than 70 wildlife species, and is devastating especially in young animals (Grubman and Baxt, 2004)

  • Some control strategies including eradication, vaccination, selective test and slaughter have been widely used for preventing foot-and-mouth disease virus (FMDV) infection (Leforban, 1999; Barnett and Carabin, 2002), but diseases caused by FMDV remain prevalent in pigs and cattle all over the world owing to the absence of reciprocal protection among several FMDV serotypes (Haydon et al, 2001)

  • The majority of transgenic (TG) mice infected with FMDV were resistant to infection and showed only slightly abnormal pathology compared with controls

Read more

Summary

Introduction

Foot-and-mouth disease (FMD) is an acute and highly contagious disease of cloven-hoofed animals, including cattle, pigs, sheep and goats and more than 70 wildlife species, and is devastating especially in young animals (Grubman and Baxt, 2004). We report that TG pigs expressing siRNA against FMDV are resistant to viral challenge. Compared with normal mice infected with the foot-and-mouth disease virus, the genetically engineered mice showed little sign of the disease in their bodies. We constructed a total of 10 shRNA expression vectors (Figure 1A) targeting viral structural protein VP1 of FMDV type O and determined the efficacy of shRNAs for inhibiting FMDV replication in BHK cells by real-time RT-PCR.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.