Abstract

Alzheimer's disease is the most common cause of senile dementia in the United States and Europe. At present, there is no effective treatment. Given the disease's prevalence and poor prognosis, the development of animal models has been a high research priority. Transgenic modeling has been pursued on the basis of the amyloid hypothesis and has taken advantage of mutations in the amyloid precursor protein and the presenilins that cause familial forms of Alzheimer's disease. Modeling has been most aggressively pursued in mice, for which the techniques of genetic modification are well developed. Transgenic mouse models now exist that mimic a range of Alzheimer's disease-related pathologies. Although none of the models fully replicates the human disease, the models have contributed significant insights into the pathophysiology of beta-amyloid toxicity, particularly with respect to the effects of different beta-amyloid species and the possible pathogenic role of beta-amyloid oligomers. They have also been widely used in the preclinical testing of potential therapeutic modalities and have played a pivotal role in the development of immunotherapies for Alzheimer's disease that are currently in clinical trials. These models will, without a doubt, continue to play central roles in preclinical testing and be used as tools for developing insights into the biological basis of Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.