Abstract
The cervical and anterior thoracic regions of mammals generally exhibit similar vertebral numbers and identities along the anterior-posterior axis. The position of the forelimbs along the axial skeleton is also generally conserved. In contrast, the number of lumbar and sacral vertebrae and pelvic position exhibit more variation, correlating with posture and locomotion. The molecular mechanisms that lead to these conserved and variable axial skeletal patterns between species are not fully understood. Here we use a human HOXB1-9 transgene to complement a HoxB1-9 deficiency in the mouse. In TgHOXB1-9 mice, human HOXB1, B2, B3, and B4 (HOXB1-4) genes were expressed in mouse embryos in patterns similar to mouse Hoxb1-4 genes. Human transgene expression rescued the cervical and anterior thoracic vertebral patterning defects of HoxB1-9Δ/Δ mice. In addition, the posterior shift in forelimb position of HoxB1-9Δ/Δ mice was rescued by the transgene. Interestingly, the position of the lumbar-sacral transition in both TgHOXB1-9; HoxB1-9Δ/Δ and TgHOXB1-9; HoxB1-9+/+ mice was altered from six lumbar and four sacral vertebrae found in wild-type controls to five lumbar and five sacral vertebrae. The change in the position of the lumbar-sacral transition consequently altered the position of the pelvis. In contrast to the conserved expression of human HOXB1-4 genes in TgHOXB1-9 mouse embryos, the anterior border of human HOXB9 expression in the neural tube and paraxial mesoderm was shifted posteriorly by 2–3 somites compared to the anterior boundary of endogenous Hoxb9 expression. These findings suggest that conservation and variation in Hoxb/HOXB expression contributes to conserved and species-specific vertebral pattern and limb position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.