Abstract

Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.

Highlights

  • Malaria is a devastating disease annually infecting over 200 million people worldwide, and is a leading cause of death in Sub-Saharan Africa [1]

  • We examined whether the natural anti-parasitic protein thioester containing protein 1 (TEP1) can be harnessed to generate malaria resistant mosquitoes

  • We report the expression pattern of genes of the TEP1 immune pathway and the effects of both exogenous and enhanced endogenous expression of TEP1 on the development of Plasmodium in Anopheles gambiae

Read more

Summary

Introduction

Malaria is a devastating disease annually infecting over 200 million people worldwide, and is a leading cause of death in Sub-Saharan Africa [1]. The malaria-causing Plasmodium parasites are vectored by Anopheline mosquitoes, which constitute the obligatory primary host for Plasmodium. Thanks to vector control and the availability of anti-malarial combination therapies, estimated global malaria cases and mortality rates between 2000 and 2015 have declined by 37% and 60%, respectively, falling to approximately 440,000 deaths annually. Despite this downward trend, the fight against malaria is complicated by the spread of genetic resistance to insecticides in mosquitoes, and to anti-malarial drugs in Plasmodium. To prevent a reversal in the current malaria decline, new vector control strategies need to be developed

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call