Abstract

Perinatal hypoxia-ischemia (HI) is a major cause of neurological disability and mortality in infant and children. In the present study, we explored the neuroprotective efficacy of FGF-1 in a rat model of perinatal HI. Carotid ligation combined with hypoxia caused marked infarctions in the ipsilateral cerebral hemisphere with significant loss of ipsilateral striatal, cortical and hippocampal volumes. Morphological analyses revealed both apoptotic and necrotic form of neuronal death determined by Nissl histology, dark-field microscopy and TUNEL staining. HI induced a marked increase in activated caspase-9, caspase-3 and PARP cleavage at 12 h to 7 days after HI in brain areas displaying TUNEL (+) cells. In addition, expression of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) was decreased under similar conditions of HI. Expression of human FGF-1 in brain significantly reduced the extent of both apoptotic and necrotic injury caused by HI. FGF-1 attenuated the HI-induced increase in activated caspase-3, caspase-9 and cleaved PARP protein levels and markedly blocked the HI-induced decrease in XIAP expression under the conditions at which FGF-1 showed significant neuroprotection. These findings demonstrate that FGF-1 prevents the onset of both apoptotic and necrotic death in neurons otherwise "destined to die" following hypoxic-ischemic injury by intervening at the level of caspase-signaling cascades and by restoring prosurvival protein XIAP expression in central neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.