Abstract

The conserved microRNA396 (miR396) is involved in growth, development, and abiotic stress responses in a variety of plants by regulating target genes. Here, we obtained transgenic Chrysanthemum indicum (C. indicum) overexpressing the cin-miR396a gene. The transgenic plants (TGs) had longer internodes and fewer epidermal hairs in contrast with the wild-type (WT) control. cin-miR396a overexpression in C. indicum reduced salt tolerance and drought tolerance. After salt and drought stress compared with WT plants, the transgenic C. indicum exhibited a relative decrease in leaf water content, and the leaf free proline content, also exhibited a relative increase, in the leaf conductivity and leaf Malondialdehyde content, while the total chlorophyll content did not differ significantly from WT, and the Na+/K+ ratio in the roots of transgenic C. indicum increased after salt stress. We also identified two target genes of cin-miR396a, CiGRF1 and CiGRF5, whose expression was induced by salt and drought treatments and suppressed in transgenic C. indicum. Taken together, our results reveal a unique role for the regulatory module of miR396a-GRFs in C. indicum development and response to abiotic stresses. cin-miR396a plays a negative regulatory role in C. indicum in response to salt and drought stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call