Abstract

SummaryTransgenic barley plants (Hordeum vulgare L. cv. Kymppi) were obtained by particle bombardment of various tissues. Immature embryos and microspore-derived cultures were bombarded with gold particles coated with plasmid DNA carrying the gene coding for neomycin phosphotransferase II (NPTII), together with plasmid DNA containing the gene for β-glucuronidase (GUS).Bombarded immature embryos were grown to plants without selection and NPTII activity was screened in small plantlets. One plant proved to be transgenic (T0). This chimeric plant passed the transferred nptll gene to its T1 progeny. The presence of the nptll gene was demonstrated by the PCR technique and enzyme activity was analyzed by an NPTII gel. assay. Four T0 spikes and 15 T1 offspring were transgenic. The integration and inheritance was confirmed by Southern blot hybridization. Transgenic T2 and T3 plants were produced by isolating embryos from green grains of transgenic T1 and T2 plants, respectively and growing them to plants. After selfing, the ratio of transgenic to non-transgenic T2 offspring was shown to follow the rule of Mendelian inheritance. The general performance of transgenic plants was normal and no reduction in fertility was observed.Microspore-derived cultures were bombarded one and four weeks after microspore isolation. After bombardment, cultures were grown either with or without antibiotic selection (geneticin R or kanamycin). When cultures were grown without selection and regenerated plants were transferred to kanamycin selection in rooting phase, one out of a total of about 1500 plants survived. This plant both carried and expressed the transferred nptll gene. The integration was confirmed by Southern blot hybridization. This plant was not fertile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call