Abstract

Traditionally, many evolutionary algorithm operators have biological inspiration. Genetics has contributed to the proposal of a number of different evolutionary operators, such as haploid crossover, mutation, diploid, inversion, gene doubling, deletion, and others. In the present study, we propose a new genetic-inspired evolutionary operator, named Transgenic, which was specially designed for Genetic Algorithms (GA). The proposed operator is inspired by genetically modified organisms (GMOs), where important features are artificially introduced into their genome. Transgenic can be used to artificially insert relevant characteristics in the chromosome of individuals, thus converging to better results faster than traditional GAs. When relevant characteristics are known a prior, then, Transgenic simply forces the presence of such characteristics in part of the population (in an elitism-based approach). Whenever there is no a priori knowledge available, Transgenic automatically identifies relevant features (based on historical information) to perform the elitism approach. The GA, used in this study was designed to allow the discovery of concise, yet accurate, high-level rules (from synthetic and real biological databases) which can be used as a classification system. The empirical results have shown that Transgenic is capable of generating better results than traditional rule classification methods, such as J48, Single Conjunctive Rule Learner, One R and PART, using synthetic datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.