Abstract

In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. If lethality is complete, releasing this strain should only reduce population size and not affect the genetics of the target populations. Approximately 450 thousand males of this strain were released each week for 27 months in Jacobina, Bahia, Brazil. We genotyped the release strain and the target Jacobina population before releases began for >21,000 single nucleotide polymorphisms (SNPs). Genetic sampling from the target population six, 12, and 27–30 months after releases commenced provides clear evidence that portions of the transgenic strain genome have been incorporated into the target population. Evidently, rare viable hybrid offspring between the release strain and the Jacobina population are sufficiently robust to be able to reproduce in nature. The release strain was developed using a strain originally from Cuba, then outcrossed to a Mexican population. Thus, Jacobina Ae. aegypti are now a mix of three populations. It is unclear how this may affect disease transmission or affect other efforts to control these dangerous vectors. These results highlight the importance of having in place a genetic monitoring program during such releases to detect un-anticipated outcomes.

Highlights

  • In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd

  • One such genetic-based program has involved releasing a strain of Aedes aegypti (OX513A) that was transgenically modified to be homozygous for a conditional dominant lethal[3,4]

  • Our data clearly show that release of the OX513A has led to significant transfer of its genome into the natural Jacobina population of Ae. aegypti

Read more

Summary

Introduction

In an attempt to control the mosquito-borne diseases yellow fever, dengue, chikungunya, and Zika fevers, a strain of transgenically modified Aedes aegypti mosquitoes containing a dominant lethal gene has been developed by a commercial company, Oxitec Ltd. Methods based on genetic manipulations are among the most appealing and actively pursued[2] One such genetic-based program has involved releasing a strain of Aedes aegypti (OX513A) that was transgenically modified to be homozygous for a conditional dominant lethal[3,4]. This strain carries a fluorescent protein gene that allows detection of OX513A X wild type F1 offspring. Release of this strain in large numbers has been effective in reducing populations of Ae. aegypti by up to 85%5. It is known that, under laboratory conditions, 3–4% of the offspring from matings of OX513A with wild type do survive to adulthood they are weak and it is not known if they are fertile[4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call