Abstract
Transgenerational nanoplastic toxicity could be detected in Caenorhabditis elegans after exposure at the parental generation (P0-G); however, the underlying mechanisms remain largely unclear. We aimed to examine the role of germline nuclear hormone receptors (NHRs) in controlling the transgenerational toxicity of polystyrene nanoparticles (PS-NPs) based on gene expression screening and functional analysis. Among germline NHR genes, daf-12, nhr-14, and nhr-47 expressions were increased and nhr-12 expression was decreased by PS-NPs (1 and 10 μg/L). Transgenerational alterations in expressions of these four NHR genes were also induced by PS-NPs (1 and 10 μg/L). RNAi of daf-12, nhr-14, and nhr-47 caused resistance, whereas RNAi of nhr-12 conferred susceptibility to transgenerational PS-NP toxicity. After PS-NP exposure, expressions of ins-3, daf-28, and ins-39 encoding insulin ligands, efn-3 encoding Ephrin ligand, and lin-44 encoding Wnt ligand, as well as expressions of their receptor genes (daf-2, vab-1, and/or mig-1), were dysregulated by the RNAi of daf-12, nhr-14, nhr-47, and nhr-12. Therefore, alteration in certain germline NHRs could mediate the induction of transgenerational nanoplastic toxicity by affecting secreted ligands and their receptors in the offspring of exposed organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.