Abstract

The transgenerational inheritance of phenotype induced by environmental factors is a new focus in epigenetic research. In this study, Drosophila melanogaster (F0) was cultured in the medium containing cadmium (Cd, 4.5 mg/kg) from eggs to adults, and offspring (F1-F4) were continuously kept in standard medium (without cadmium). The phenotype analysis showed that cadmium induced developmental defects on wings and apoptosis in the wing disc cells of Drosophila (F0). The wing defects were transmitted for at least four generations even without Cd afterwards. And the effect on the mRNA expression of wing development related genes (shg, omb, F-actin, Mekk1) can be maintained for at least two or three generations. More importantly, under cadmium stress, the post-translational modification (PTM) on the histones H3K4me3 in the third instar larvae and ovaries or testes of adult flies increased significantly, while the levels of H3K9me3 and H3K27me3 decreased significantly. The expression of histone methylation related genes (dSet-1, ash1, Lsd1) increased significantly and these changes can be transmitted to offspring from one or two generations in ovaries or testes. These results suggest that the phenotypic defects of wings caused by cadmium can be inherited to the offspring, and this transgenerational inheritance effect may be related to the epigenetic regulation of histone methylation. Therefore, the adaptability of offspring should be considered when evaluating the toxicity and environmental risk of cadmium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call