Abstract

The zone of the Chernobyl nuclear disaster represents the largest area of chronic low-intensity radioactive impact on the natural ecosystems. The effects of chronic low-dose irradiation for natural populations of organisms and their offspring are unknown. The natural populations of Drosophila melanogaster sampled in 2007 in Chernobyl sites with different levels of radiation contamination were investigated. The offspring of specimens from these populations were studied under laboratory conditions to assess the effects of parental irradiation on the mutation process and survival of the offspring. Transgenerational effects of radioactive contamination were observed at the level of gross chromosomal rearrangements (dominant lethal mutations). The frequency of point/gene mutations (recessive sex-linked lethal mutations) of the offspring of the irradiated parents corresponded to the actual level of spontaneous mutations. The survival rate of offspring decreased over 160 generations and significantly correlated with the dominant lethal mutation levels. Our results provide a compelling evidence that other factors (distance from the Chernobyl Nuclear Power Plant, time after the initial exposure, selection site and origin of population) can affect the changes in the levels of the studied parameters along with the parental radiation exposure. They can also make a significant contribution to the health of the offspring of animals exposed to radioactive contamination. These data should be useful for future radioecological studies which will clarify the true mechanisms of transgenerational inheritance and generation of mutations to the offspring of chronically irradiated animals and their reactions to the interaction of various environmental factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call