Abstract

CD8+ cytotoxic T lymphocyte (CTL) exhaustion is one of the major obstacles for the effectiveness of virus control in chronic infectious diseases. We previously generated novel ovalbumin (OVA)-specific 41BBL-expressing OVA-TEXO and human immunodeficiency virus (HIV-1) Gag-specific Gag-TEXO vaccines, inducing therapeutic immunity in wild-type C57BL/6 (B6) mice, and converting CTL exhaustion in recombinant OVA-specific adenovirus AdVOVA-infected B6 (AdVOVA-B6) mice with chronic infection. IL-21 cytokine plays an important role in controlling chronic infections. Therefore, in this study, we constructed recombinant transgene IL-21-expressing AdVIL-21, and generated IL-21-expressing OVA-TEXO/IL-21 and Gag-TEXO/IL21 vaccines, or control vaccines (OVA-TEXO/Null and Gag-TEXO/Null) by infecting OVA-TEXO and Gag-TEXO cells with AdVIL-21 or the control AdVNull, lacking transgene, and assessed their effects in B6 or AdVOVA-B6 mice. We demonstrate that both OVA-TEXO/IL-21 and control OVA-TEXO/Null vaccines are capable of converting CTL exhaustion in chronic infection. However, the OVA-TEXO/IL-21 vaccine more efficiently rescues exhausted CTLs by increasing stronger CTL proliferation and effector cytokine IFN-γ expression than the control OVA-TEXO/Null vaccine in AdVOVA-B6 mice with chronic infection, though both vaccines stimulated comparable OVA-specific CTL responses and protective immunity against OVA-expressing BL6-10OVA melanoma lung metastasis in wild-type B6 mice. In vivo, the OVA-TEXO/IL-21-stimulated CTLs more efficiently up-regulate phosphorylation of mTORC1-controlled EIF4E and expression of mTORC1- regulated T-bet molecule than the control OVA-TEXO/Null-stimulated ones. Importantly, the Gag-TEXO/IL21 vaccine induces stronger Gag-specific therapeutic immunity against established Gag-expressing BL6-10Gag melanoma lung metastases than the control Gag-TEXO/Null vaccine in chronic infection. Therefore, this study should have a strong impact on developing new therapeutic vaccines for patients with chronic infections.

Highlights

  • During acute viral infections, both innate and adaptive immunity work together contribute to the clearance of the pathogens [1]

  • In this study, we constructed recombinant transgene IL-21-expressing AdVIL-21, and generated IL-21-expressing OVA-TEXO/IL-21 and Gag-TEXO/IL21 vaccines, or control vaccines (OVA-TEXO/Null and Gag-TEXO/Null) by infecting OVA-TEXO and Gag-TEXO cells with AdVIL-21 or the control AdVNull, lacking transgene, and assessed their effects in B6 or AdVOVA-B6 mice. We demonstrate that both OVA-TEXO/IL-21 and control OVA-TEXO/Null vaccines are capable of converting cytotoxic T lymphocyte (CTL) exhaustion in chronic infection

  • The inhibitory PD-1 molecule was originally found on active T cells following T cell receptor (TCR) engagement and became a T cell-intrinsic mechanism for negatively regulating CTL responses [38] [39]

Read more

Summary

Introduction

Both innate and adaptive immunity work together contribute to the clearance of the pathogens [1]. The common characteristic of chronic infections, such as human immunodeficiency virus [4], hepatitis C virus (HCV) or hepatitis B virus (HBV) is that anti-virus CTLs are initially stimulated, but later become quantitatively and qualitatively defective leading to a stepwise progression of functional exhaustion and incapability of clearing pathogens [3]. These exhausted CTLs express some immune inhibitory molecules, such as programmed death-1 (PD-1), T-cell Ig and mucin protein-3 (TIM-3), and lymphocyte-activation gene 3 (LAG-3) [3] [5] [6]. It has been found that longer duration of the chronic infection or severe loss of CD4+ T cell help often leads to more serious CTL exhaustion [1] [13], and the final stage of CTL exhaustion often results in depletion of virus-specific CTLs [8] [10]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.