Abstract

Abstract Chapter 12 presents a detailed analysis of continuous-time signals and systems in the frequency domain, including the theory of Fourier series and Fourier transforms, and key examples relevant for the analysis and synthesis of signals processed in the digital transceiver blocks of a communication system. The amplitude, magnitude, phase, and power spectra are defined and calculated for typical signals. In particular, the Fourier transform of periodic signals is presented, due to its importance in communication systems theory and practice. Using a unique notation that distinguishes energy and power signals, the correlation, power, and energy spectral density functions are inter-related by proving the Wiener–Khintchine theorem. A comprehensive analysis of a linear-time-invariant system, using the concepts of impulse response, system correlation function, and power spectral density, both for power signals and energy signals, is presented. In addition, Parseval’s theorem and the Rayleigh theorem are proven.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call